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ABSTRACT 

 
The effective thermal conductivity of anisotropic 

composites is studied. Using a Maxwell unit cell, a new 
analytical solution is developed for anisotropic composites 
based on the self-consistent field concept. The matrix is 
considered to be composed of randomly distributed elliptical 
particles within a continuous medium. The particles are 
allowed to have various aspect ratios and arbitrary orientation 
relative to the coordinate system axes with respect to which 
the components of effective thermal conductivity tensor is 
evaluated. The temperature distribution is solved in the unit 
cell and averaged to obtain all the spatial components of the 
effective thermal conductivity matrix. The proposed solution 
yields the Maxwell’s theory at the limit where the particles’ 
aspect ratio approaches unity. The present solution can serve 
as a general model for anisotropic composites with dilute 
dispersion of particles. 

NOMENCLATURE 
ܽ = Aspect ratio, coefficients of transformation 
 Area, ݉ଶ = ܣ
 ݉ ,Closure variable = ܊
ܿ = Distance between the focuses of ellipse, ݉ 
۷ = Unit tensor 
݇ = Thermal conductivity, ܹ/݉ܭ 
۹ = Effective thermal conductivity tensor, ܹ/݉ܭ 
 ݉ ,Half of major diameter of outer ellipse = ܮ
 Anisotropy coefficients matrix = ۻ
 Normal vector = ܖ
 Heat flux, ܹ/݉ଶ = ܙ
ܶ = Temperature, ܭ 
ܸ = Volume of representative elementary volume, ݉ଷ 

 ݉ ,Half of minor diameter of inner ellipse = ݓ
ܹ = Half of minor diameter of outer ellipse, ݉ 
ܺ = Coordinate in ܱభమ, ݉ 
 ݉ ,x-coordinate = ݔ
 ݉ ,y-coordinate = ݕ

Greek symbols 
 Volume fraction = ߝ
 ݀ܽݎ ,Orientation angle of particle = ߠ
ℓ = Half of major diameter of inner ellipse, ݉ 
 Kronecker delta tensor = ߜ
 Thermal conductivity ratio = ߢ
 First coordinate in elliptic cylindrical coordinate = ߟ
߰ = Second coordinate in elliptic cylindrical  

coordinate 
Subscript and super script 

 pahse-ߚ = ߚ
 pahse-ߪ = ߪ
 interface-ߪߚ = ߪߚ
݂݂݁ = Effective 

INTRODUCTION 
Over the past century, enormous research efforts have been 

focused on the determination of thermal properties of 
heterogeneous materials due to the abundant applications in 
industry and engineering. Among those are catalytic reactors, 
packed beds [1], composite materials [2], thermal interface 
materials [3], particle-in-liquid suspensions [4], cracks in 
solids [5] and new artificial materials such as gas diffusion 
layer (GDL) in proton exchange membrane fuel cells 
(PEMFC) [6]. GDL plays an important role in the operation of 
PEM fuel cells in that it has to fulfil several demands at the 
same time such as reactant gas transport, draining out liquid 



water, conducting electrons and heat, etc. Effective 
conductivity (EC) and effective thermal conductivity (ETC) 
are two important properties of GDL which strongly affect and 
limit heat and mass transport as well as reaction rate. 
Therefore, the accurate knowledge of these parameters is 
essential to improve the power density and efficiency of 
PEMFCs. 

Since the early work of Maxwell, numerous researches 
have been done to predict the effective thermal conductivity of 
various porous materials using different approaches. Hamilton 
and Crosser derived a semi-analytical geometrical model for 
two component mixture with non-spherical inclusions [7]. The 
effect of particle shape was taken into account through an 
empirical parameter which was related to sphericity. Hadley 
considered the randomness of particles distribution to correct 
the effective thermal conductivity at low porosities [8]. 
Hadley’s model was modified by Verma et. al. in terms of 
constituent phases to obtain a better agreement with 
experimental data [9]. Yu and Choi extended the Hamilton 
and Crosser’s model for particle-in-liquid systems to account 
for ordered liquid layer surrounding the particles [4]. More 
recently, Felske derived an analytical solution for the ETC of 
composites with randomly distributed spherical inclusions and 
interfacial layer within the self-consistent field model [10]. 
Within the framework of the volume averaging method 
(VAM) [11], Nozad et. al. developed a closure problem for 
two phase systems by solving which the ETC tensor can be 
completely described [12]. However, this closure problem can 
only be solved numerically, for geometries of practical 
application [1, 11, 13]. 

Even though most natural systems and many processed 
materials of practical importance are anisotropic, only a few 
researches have been dedicated to model anisotropic ETC 
tensor. Using the VAM, Lux et. al. numerically solved the 
closure problem of conduction heat transfer to obtain the 
complete ETC tensor of wood fibers [14]. Based on 
variational principle of Hashin and Shtrikman, Lu et. al. 
obtained the ETC tensor for composites with randomly 
distributed aligned spheroidal inclusions [5]. Using the same 
approach, Shafiro and Kachanov derived anisotropic ETC of 
non-randomly oriented inclusions of ellipsoidal shapes [15]. 
Although this approach leads to a closed form for ETC tensor, 
it cannot be considered as a completely exact solution. This 
method considers a composite as a matrix in which inclusions 
of different phase is embedded. Each particle is subject to a far 
field temperature gradient and the disturbance caused by other 
particles is either neglected or estimated by Hasselman-
Johanson’s equivalent inclusion model [5]. The final 
expression is in the form of truncated virial expansion and 
ETC tensor is diagonal [5, 15]. 

In this study, based on the self-consistent field concept, an 
analytical solution describing the complete ETC tensor of 
anisotropic composites with elliptical inclusions is presented. 
This model can serve as a general 2D model for ETC of highly 
porous anisotropic materials such as GDL. 

 

EFFECTIVE THERMAL CONDUCTIVITY TENSOR 
The tensor nature of effective thermal conductivity of 

heterogeneous materials has been addressed by several authors 
[1, 11, 13]. Therefore, it is convenient to represent ETC tensor 
in its precise meaning, i.e. its components transform according 

to the transformation law associate with a specific coordinate 
transformation group [16]. On one hand, the effective thermal 
conductivity tensor has a rigorous definition in the VAM in 
terms of a closure variable vector which is to be solved in 
some representative unit cell. On the other hand, it can be 
proved that the ETC obtained in the self-consistent field model 
by averaging the temperature field is identical to those given 
by the solution of closure problem in the VAM [11, 13]. 
Hence, we take advantage of the definition of ETC tensor of 
the VAM to associate it with a Cartesian transformation 
group. In the following the definition of ETC within the 
framework of the VAM is briefly explained. 

 

FIGURE 1. REPRESENTATIVE ELEMENTARY VOLUME 

 
The principle of the analytical volume averaging process is 

applied by integrating the equation of heat conduction over 
each phase within a representative elementary volume (REV). 
Figure 1 shows an REV associated with centre point x, in a 
two phase porous medium with a microstructure of arbitrary 
geometry. Details regarding the selection and conditions of an 
REV are outlined by Whitaker [11]. 

The superficial average  of a quantity  defined in the 
phase  is given by 

 (1) 

The intrinsic average  is defined as 

 (2) 

One can decompose a local variable  in the following 
manner 

 (3) 

Using the above definitions and assuming local thermal 
equilibrium [11], one can drive the superficial average of heat 
flux vector in a two phase system shown in Fig. 1. 

 (4) 

where  

 (5) 

  (6) 

In the above equations,  is the volume fraction of each 
phase. The effective thermal conductivity tensor in Eq. (4) is 
defined as 



܍۹

݇ఉ
ൌ ൫ߝఉ݇ఉ  ఙ݇ఙ൯۷ߝ 

݇ఉ െ ݇ఙ

ܸ
න ܣ݀܊ોܖ

ഁ

 (7) 

where ܣఉఙ is the area of ߚ െ  ો is unit normalܖ ,interface ߪ
vector pointing from ߚ-phase to ߪ-phase and ܊ is closure 
variable vector defined as 

෨ܶఉ ൌ ܊ ·  (8) ۄܶۃ

The ܊-field can be obtained through solving the heat 
conduction closure problem [11, 12] which is a boundary 
value problem in a unit cell with periodic boundary 
conditions. Without entering further into details of derivation 
of Eq. (4), (7) and associate closure problem, we refer the 
reader to [1, 11, 12] for comprehensive study. 

We consider an infinite two dimensional matrix containing 
an elliptical inclusion with arbitrary orientation with respect to 
coordinate system of interest as shown in Fig. 2. Since the 
components of ETC tensor are dependent on the choice of 
coordinate system, it is to our advantage to represent the ETC 
associate with a transformation group. In this study, we are 
only concerned with the rectangular Cartesian transformation 
group. 

 

FIGURE 2. ELLIPTICAL INCLUSION IN MATRIX 

 
In obtaining all the components of ETC for the composite 

shown in Fig. 2 with respect to ܱభమ coordinate system, the 
properties of rectangular Cartesian transformation are 
exploited. We take advantage of Eq. (8) to show how ETC 
components satisfy the transformation law. Since the left hand 
side of Eq. (8) is a scalar, so is the right hand side. This means 
that both sides of Eq. (8) must be invariant with respect to 
rectangular Cartesian transformation group. Given the fact that 
dot product of two vectors is invariant [16] and ۄܶۃ is a 
vector, one can conclude that the components of ܊ satisfy the 
transformation law. The transformation law for the coordinate 
systems shown in Fig. 2 is given by [16] 

ܺ ൌ ܽ
 തܺ (9) 

A tensor notation is used throughout (݆ ൌ 1, 2ሻ. Since 
translation of the origin of coordinate system has no effect on 
the tensor components, only rotation is considered. 

ܽ
 ൌ ቂ ߠݏܿ ߠ݊݅ݏ

െߠ݊݅ݏ ߠݏܿ
ቃ (10) 

Equation (7) can be rewritten in components form as the 
following 

ܭ


݇ఉ
ൌ ൫ߝఉ݇ఉ  ߜఙ݇ఙ൯ߝ 

݇ఉ െ ݇ఙ

ܸ
න ݊ఉఙ


ఉܾ
݀ܣ

ഁ

 (11) 

where ߜ is Kronecker delta tensor. In writing Eq. (11), it is 
assumed that the ETC is an associated metric tensor of 
contravariant order 2. Note that it does not matter which tensor 
type is attributed to ETC in that the components of 
fundamental metric, associated metric and mixed tensors are 
identical with respect to rectangular Cartesian transformation 
group [16]. However, one should be careful about the tensor 
type when dealing with general coordinate transformations. 

One can write Eq. (11) as associated with the coordinate 
transformation shown in Fig. 2. 

ܭ


݇ఉ
ൌ ൫ߝఉ݇ఉ  ఙ݇ఙ൯ܽߝ

 ܽ
             ҧߜ

ܽ
 ܽ

 
݇ఉ െ ݇ఙ

ܸ
න ത݊ఉఙ

 തܾ
ఉ
݀ܣ

ഁ

൩ 

(12) 

which implies that 
ഥܭ



݇ఉ
ൌ ൫ߝఉ݇ఉ  ҧߜఙ݇ఙ൯ߝ 

݇ఉ െ ݇ఙ

ܸ
න ത݊ఉఙ

 തܾ
ఉ
݀ܣ

ഁ

 (13) 

and 

ܭ
 ൌ ܽ

 ܽ
 ഥܭ

  (14) 

Equation (14) illustrates the tensor nature of ETC and how 
its components in two coordinate systems are related. 

 

ANALYSIS 
In general, for inclusions with arbitrary orientation, such as 

the one shown in Fig. 2, all the components of ETC with 
respect to ܱభమ are non-zero. This problem can be simplified 
by transforming ܱభమ into a coordinate system axes of which 
are along the principle axes of ETC tensor that is ܱതభതమ (see 
Fig. 2). In the case of ellipse, the principle axes of ETC are 
along the major and minor diameters. Based on the definition 
of ۹܍ given by Eq. (7), for the elliptical inclusion shown in 
Fig. 2 it can be proved that ETC is a diagonal tensor with 
respect to ܱതభതమ due to the geometrical symmetry of ellipse 
and skew-symmetric ܊ [11]. It should also be mentioned that 
ഥܭ തതതଶ makes no contribution toݍ

ଵଵ  and ݍതതതଵ makes no 
contribution to ܭഥ

ଶଶ . Therefore, one can take advantage of 
superposition principle to separately obtain the two principle 
components of ETC.  
 

Effective thermal conductivity in x-direction 
In this section an analytical solution for the first principle 

component of ETC with respect to ܱതభതమ for the two phase 
system shown in Fig. 2 is developed. Therefore, in this case, 
the heat flow direction is considered to be along the major axis 
of the ellipse. We use ݔ ൌ തܺଵ and ݕ ൌ തܺଶ to simplify the 
notation. Figure 3 illustrates the geometry considered for this 
case. 

 

തܺଵ തܺଶ 

ܺଵ 

ܺଶ 

 ܙ

 ߠ

 തതതଵݍ

 തതതଶݍ

ߚ െ  ݁ݏ݄ܽ
ߪ െ  ݁ݏ݄ܽ



FIGURE 3. GEOMETRY FOR ETC IN X-DIRECTION 

 
A uniform far field heat flux ܙஶ ൌ  is imposed in the തതതଵݍ

medium at large distance from the inclusion. The composite is 
considered to be composed of two confocal ellipses: an 
elliptical particle (ߪ െ  ሻ surrounded by an elliptical݁ݏ݄ܽ
region of continuous medium (ߚ െ  The far field flux .(݁ݏ݄ܽ
outside of the outer ellipse is not disturbed by the presence of 
the particle. The governing equations and boundary conditions 
for this problem are given by 

ଶߘ
ఉܶ ൌ ߚ  ݊݅           0 െ  ݁ݏ݄ܽ (15) 

߲ ఉܶ

ݕ߲
ൌ  ௦ଶܣ  ݐܽ        0 (16) 

ܖ · ݇ఉ ఉܶ ൌ ܖ ·  ଶܣ  ݐܽ         ∞ܙ (17) 

൜
ఉܶ ൌ ఙܶ

ܖ · ݇ఉ ఉܶ ൌ ܖ · ݇ఙ ఙܶ
 ଵܣ  ݐܽ        (18) 

߲ ఙܶ

ݕ߲
ൌ ,௦ଵܣ  ݐܽ          0  ܣ (19) 

ଶߘ
ఙܶ ൌ ߪ  ݊݅          0 െ  ݁ݏ݄ܽ (20) 

To solve the boundary value problem described by Eq. 
(15) – (20) for the geometry in Fig. 3 elliptic cylinder 
coordinate transformation is used. The equations of 
transformation are given by 

൜
ݔ ൌ ܿ cosh ߟ  cos ߰
ݕ ൌ ܿ sinh ߟ  sin ߰  (21) 

Under the non-linear transformation of Eq. (21) the geometry 
of the two phase composite (Fig. 2) is converted to two 
rectangular domains as shown in Fig. 4. 
 

FIGURE 4. GEOMETRY FOR ETC IN X-DIRECTION AFTER 
TRANSFORMATION 

 
The governing equations and boundary conditions in the 

new coordinate system take the following form. 
߲ଶ

ఉܶ

ଶߟ߲ 
߲ଶ

ఉܶ

߲߰ଶ ൌ ߚ  ݊݅           0 െ  ݁ݏ݄ܽ (22) 

߲ ఉܶ

߲߰
ൌ 0  ௦ଶܣ  ݐܽ        (23) 

߲ ఉܶ

ߟ߲
ൌ ቆെ

0ഥݍ 1ܿ

݇ఉ
ቇ sinh 1ߟ cos ߰ ݐܽ           ଶܣ (24) 

ቐ
ఉܶ ൌ ఙܶ

݇ఉ
߲ ఉܶ

ߟ߲
ൌ ݇ఙ

߲ ఙܶ

ߟ߲
 ଵܣ  ݐܽ         (25) 

߲ ఙܶ

߲߰
ൌ 0  ௦ଵܣ  ݐܽ         (26) 

߲ ఙܶ

ߟ߲
ൌ 0  ܣ  ݐܽ          (27) 

߲ଶ
ఙܶ

ଶߟ߲ 
߲ଶ

ఙܶ

߲߰ଶ ൌ ߪ  ݊݅          0 െ  ݁ݏ݄ܽ (28) 

where  

ଵߟ ൌ ݊ܮ
ݓ  ℓ

ܿ
, ଶߟ        ൌ  ݊ܮ

ܹ  ܮ
ܿ

 (29) 

This boundary value problem has a straightforward 
solution for the geometry shown in Fig. 4. The solution can be 
written as 

ఉܶሺߟ, ߰ሻ ൌ ሾܤ cosh ߟߣ  ܦ sinh ሿߟߣ cos ߰ߣ

ஶ

ୀଵ

 (30) 

ఙܶሺߟ, ߰ሻ ൌ  ܣ cosh ߟߣ  cos ߰ߣ

ஶ

ୀଵ

 (31) 

The coefficients ܣ , ܤ and ܦ are found to be  
ܣ ൌ Ԣܣ ܲ/ܳ (32) 
ܤ ൌ Ԣܤ ܲ/ܳ (33) 
ܦ ൌ Ԣܦ ܲ/ܳ (34) 

where 
Ԣܣ ൌ coth ଵߟߣ െ tanh ଵߟߣ (35) 

Ԣܤ ൌ coth ଵߟߣ െ ߢ tanh ଵߟߣ (36) 
Ԣܦ ൌ ߢ െ 1 (37) 

ܳ ൌ ሾcothߢ ଶߟߣ െ tanh ଵ ሿߟߣ
 ሾcoth ଵߟߣ െ coth ଶሿߟߣ (38) 

and 

ܲ ൌ ቐቆെ
0ഥݍ 1ܿ

݇ఉ
ቇ

sinh 2ߟ

݊ߣ cosh 2ߟ݊ߣ

       , ݊ ൌ 1

0                      ,       ݊ ് 1

 (39) 

In the above equations ߢ ൌ ݇ఉ/݇ఙ and ߣ ൌ ݊. Equation 
(39) implies that only the first term in the infinite series 
solutions given by Eq. (30), (31) is nonzero. 

Given that ETC tensor is diagonal for this case and using 
the definition given by Eq. (4), one can evaluate the ETC in x-
direction as 

ܭ
௫௫

݇ఉ
ൌ

ۃ
߲ ఉܶ

ݔ߲ ۄ  ߢ ߲ۃ ఙܶ
ݔ߲ ۄ

ۃ
߲ ఉܶ

ݔ߲ ۄ  ߲ۃ ఙܶ
ݔ߲ ۄ

 (40) 

Using the temperature distribution in Eq. (30) and (31), the 
ETC can be obtained from Eq. (40). 

ߟ

 ଶܣ

ߚ െ ߪ ݁ݏ݄ܽ െ  ݁ݏ݄ܽ

 ଵܣ

 ܣ

 ௦ଶܣ ௦ଵܣ

 ௦ଶܣ ௦ଵܣ

 ଶߟ ଵߟ
0 

 ߨ

 ݕ

 ݔ

 ଶܣ
ߚ െ  ݁ݏ݄ܽ

ߪ െ  ݁ݏ݄ܽ

 ଵܣ

 ௦ଶܣ ௦ଵܣ ܣ

ܿ 

ℓ 

 ܮ

 ݓ

ܹ

ஶܙ ൌ  തതതଵݍ

symmetry 
line 

߰ 



ܭ
௫௫

݇ఉ
ൌ

௫ܪ
ሺଵሻ  ௫ܨߢ

ሺଵሻ െ ߢఉሺߝ െ 1ሻ

௫ܪ
ሺଶሻ  ௫ܨߢ

ሺଶሻ  ߢఉሺߝ െ 1ሻ
 (41) 

in which 

௫ܪ
ሺଵሻ ൌ

൫ܽఉ െ ܽఙ൯൫1 െ ܽఉܽఙ൯
ܽఉሺ1 െ ܽఙ

ଶሻ
 (42) 

௫ܪ
ሺଶሻ ൌ

൫3ܽఉ െ ܽఙ൯ െ ܽఉܽఙ൫ܽఉ  ܽఙ൯
ܽఉሺ1 െ ܽఙ

ଶሻ
 (43) 

௫ܨ
ሺଵሻ ൌ

൫ܽఉ  ܽఙ൯  ܽఉܽఙ൫ܽఉ െ 3ܽఙ൯
ܽఉሺ1 െ ܽఙ

ଶሻ
 (44) 

௫ܨ
ሺଶሻ ൌ

൫ܽఙ െ ܽఉ൯൫1 െ ܽఉܽఙ൯
ܽఉሺ1 െ ܽఙ

ଶሻ
 (45) 

where the two aspect ratios are defined as 

ܽఉ ൌ
ܹ
ܮ

          ,             ܽఙ ൌ
ݓ
ℓ

 (46) 

It is worth mentioning that the coefficients defined by Eq. 
(42) – (45) reflect the anisotropy of the composite in that they 
only depend on the aspect ratios. Therefore it is convenient to 
express them in matrix form. 

ܠۻ ൌ ቈ
௫ܪ

ሺଵሻ ௫ܨ
ሺଵሻ

௫ܪ
ሺଶሻ ௫ܨ

ሺଶሻ (47) 

where ܠۻ is defined as anisotropy coefficients matrix of the 
first principle component of ETC. 
 

Effective thermal conductivity in y-direction 
The procedure for obtaining the second principle 

component of ETC is the same as for the first one. In this case, 
the heat flow direction is considered to be along the minor 
diameter of ellipse. The geometry under consideration is 
presented in Fig. 5. 

 

FIGURE 5. GEOMETRY FOR ETC IN Y-DIRECTION 

 
All the dimensions in Fig. 5 are defined the same as for 

Fig. 3. The geometry after the transformation given by Eq. 
(21) is presented in Fig. 6. 
 

FIGURE 6. GEOMETRY FOR ETC IN Y-DIRECTION AFTER 
TRANSFORMATION 

 
Following the same procedure as in the case of ETC in x-

direction, the temperature distribution for ߚ and ߪ-phases are 
obtained as 

ఉܶሺߟ, ߰ሻ ൌ ሾܤ cosh ߟߣ  ܦ sinh ሿߟߣ sin ߰ߣ

ஶ

ୀଵ

 (48) 

ఙܶሺߟ, ߰ሻ ൌ  ܣ sinh ߟߣ  sin ߰ߣ

ஶ

ୀଵ

 (49) 

Using the definitions given by Eq. (32) – (34) for ܣ , ܤ 
and ܦ we have 

 
Ԣܣ ൌ coth ଵߟߣ െ tanh ଵߟߣ (50) 

Ԣܤ ൌ 1 െ  (51) ߢ
Ԣܦ ൌ cothߢ ଵߟߣ െ tanh ଵߟߣ (52) 

ܳ ൌ ሾcothߢ ଵߟߣ െ tanh ଶ ሿߟߣ
 ሾtanh ଶߟߣ െ tanh ଵሿߟߣ (53) 

and 

ܲ ൌ ቐቆെ
0ഥݍ 2ܿ

݇ఉ
ቇ

cosh 2ߟ

݊ߣ cosh 2ߟ݊ߣ

       , ݊ ൌ 1

0                      ,       ݊ ് 1

 (54) 

where ߣ ൌ 2݊ െ 1. Effective thermal conductivity in y-
direction can be obtained similar to the xx-component of ETC. 

ܭ
௬௬

݇ఉ
ൌ

ۃ
߲ ఉܶ

ݕ߲ ۄ  ߢ ߲ۃ ఙܶ
ݕ߲ ۄ

ۃ
߲ ఉܶ

ݕ߲ ۄ  ߲ۃ ఙܶ
ݕ߲ ۄ

 (55) 

Equation (55) along with the temperature distributions of 
Eq. (48), (49) provides the following result 

ܭ
௬௬

݇ఉ
ൌ

௬ܪ
ሺଵሻ  ௬ܨߢ

ሺଵሻ െ ߢఉሺߝ െ 1ሻ

௬ܪ
ሺଶሻ  ௬ܨߢ

ሺଶሻ  ߢఉሺߝ െ 1ሻ
 (56) 

The anisotropy coefficients matrix of the second principle 
component of ETC is related to that of first principle 
component through the following relation 

ܡۻ ൌ 
௬ܪ

ሺଵሻ ௬ܨ
ሺଵሻ

௬ܪ
ሺଶሻ ௬ܨ

ሺଶሻ൩ ൌ ቈ
௫ܨ

ሺଶሻ ௫ܪ
ሺଶሻ

௫ܨ
ሺଵሻ ௫ܪ

ሺଵሻ (57) 

 

RESULTS 
Using the coordinate transformation equations introduced 

in the previous sections, one can obtain the complete ETC 
tensor with respect to an arbitrary rectangular coordinate 
system from its two principle components. The ETC of 
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߰

െ
ߨ
2

 



composite shown in Fig. 2 with respect to ܱതభതమ can be 
written as 

۹ഥ ܍ ൌ ቈ
ܭ

௫௫ 0

0 ܭ
௬௬  (58) 

where ܭ
௫௫  and ܭ

௬௬  are given by Eq. (41), (56) respectively. 
Employing (10) and (14), the following relation is obtained for 
ETC with respect to ܱభమ. 

܍۹ ൌ ቈ
cosଶ ߠ ܭ

௫௫  sinଶ ߠ ܭ
௬௬ sin ߠ cos ߠ ሺܭ

௫௫ െ ܭ
௬௬ ሻ

sin ߠ cos ߠ ሺܭ
௫௫ െ ܭ

௬௬ ሻ sinଶ ߠ ܭ
௫௫  cosଶ ߠ ܭ

௬௬  (59) 

Equation (59) describes the complete ETC tensor for a 
composite with random distributed elliptical inclusions and 
arbitrary orientation. It should also be mentioned that the 
presented model has led to a symmetric ETC tensor which was 
demonstrated in several references [1, 11, 13]. Furthermore, 
Eq. (59) is only valid for systems with dilute dispersion 
particles. Therefore, the exact shape of the outer ellipse (Fig. 
3) has no significant effect on ETC and the anisotropy 
coefficients given by Eq. (42) – (45) can be simplified as 

ܠۻ ൌ lim
ഁ՜ଵ

ቈ
௫ܪ

ሺଵሻ ௫ܨ
ሺଵሻ

௫ܪ
ሺଶሻ ௫ܨ

ሺଶሻ ൌ

ۏ
ێ
ێ
ۍ
1 െ ܽఙ

1  ܽఙ

1  3ܽఙ

1  ܽఙ
3  ܽఙ

1  ܽఙ

ܽఙ െ 1
1  ܽఙ ے

ۑ
ۑ
ې
 (60) 

For circular cylindrical particles both aspect ratios in Eq. 
(46) approach one. In this limit the anisotropy coefficients 
matrices are given by 

lim
ഁ,՜ଵ

ܠۻ ൌ lim
ഁ,՜ଵ

ܡۻ ൌ ቂ0 2
2 0

ቃ (61) 

which results in the following expression for xx and yy-
component of ETC 

ܭ
௫௫ ൌ ܭ

௬௬ ൌ
ߢ2 െ ߢఉሺߝ െ 1ሻ
2  ߢఉሺߝ െ 1ሻ

 (62) 

Substituting Eq. (62) in Eq. (59), the ETC tensor can be 
written as 

܍۹ ൌ  ۷ (63)ܭ

where ܭ ൌ ܭ
௫௫ ൌ ܭ

௬௬ . Equation (62) is actually 
Maxwell’s model for ETC of circular cylindrical particles in a 
continuous medium [11]. Hence, in the limit when the 
particles are circular, the presented model produces isotropic 
ETC tensor with Maxwell’s equation as its magnitude. 

In general when ߢ  1, decreasing the aspect ratio of 
particles increases the ETC along the major diameter and 
decreases it along the minor diameter. However, the situation 
for ETC along an arbitrary axis direction is not as 
straightforward. Figure 7 illustrates the effect of aspect ratio 
on the components of ETC for a particle rotated 6/ߨ radian 
relative to ܺଵ-axis (see Fig. 2). 

In obtaining Fig. 7, the simplification of Eq. (60) was used 
for the calculation of anisotropy coefficients matrices. It is 
observed that the diagonal components, i.e. ܭ

ଵଵ  and ܭ
ଶଶ , 

approach the Maxwell’s model and the cross components 
ܭ)

ଵଶ  and ܭ
ଶଵ ) approach zero when ܽఙ ՜ 1 as the inclusion 

becomes circular in this limit. It should also be mentioned that 
by decreasing the aspect ratio of inclusion, the cross 
components as well as diagonal components increase. This 
implies that when the major axis of particle is not along the 
coordinate system axes, heat conduction enhances in both ܺଵ 

and ܺଶ directions as the aspect ratio decreases. To clarify this 
point, the effect of angle between ellipse major axis and ܺଵ-
axis, ߠ, is presented in Fig. 8. 
 

FIGURE 7. EFFECT OF ASPECT RATION ON ETC TENSOR, 
ࣂ ൌ

࣊


, ࢼࢿ ൌ . ૢ, ࣄ ൌ  

 

FIGURE 8. EFFECT OF PARTICLE ORIENTATION ON ETC 
TENSOR, ࣌ࢇ ൌ . , ࢼࢿ ൌ . ૢ, ࣄ ൌ  

 
As for Fig. 7, Eq. (60) is used for anisotropy coefficients 

matrices. Figure 8 shows the variation of all components of 
ETC versus particle orientation. The major axis of ellipse is 
along the ܺଵ and ܺଶ-axes for ߠ ൌ 0 and ߠ ൌ  ,2/ߨ
respectively. In comparison with circular cylindrical particles, 
the ETC along the major axis is higher and along the minor 
axis is lower, when ߢ  1. Since the ellipse is stretched along 
the ܺଵ-axis when ߠ ൌ ܭ ,0

ଵଵ  is higher and ܭ
ଶଶ  is lower than 

Maxwell’s model. For the same reason, ܭ
ଵଵ  is lower and 

ܭ
ଶଶ  is higher than Maxwell’s model, when ߠ ൌ  The .2/ߨ

cross components are zero in both cases. However, when ߠ is 
close to 4/ߨ, both diagonal components are higher than 
circular cylindrical particles and the cross coefficients are non-
zero. This suggests that heat conduction in a low conductivity 
material in certain direction can be effectively increased by 
adding high conductivity non-circular inclusions stretched 
along that direction. Nevertheless, one can increase the heat 
conduction in two different directions at the same time by 
adding high conductivity non-circular inclusions oriented at an 
angle between the two directions. 
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SUMMARY AND CONCLUSIONS 

Using the self-consistent field concept, an analytical 
solution for complete description of the effective thermal 
conductivity tensor of anisotropic composites was developed. 
It was shown that the presented solution yields the Maxwell’s 
theory at the limit where the particles’ aspect ratio approaches 
unity. The anisotropy of the structure was taken into account 
by introducing the anisotropy coefficients matrix into the 
Maxwell’s equation which was only a function of particles 
aspect ratio. The effective thermal conductivity was expressed 
as a tensor associated with rectangular Cartesian 
transformation group that enables one to evaluate it along any 
arbitrary direction. It was found that the heat conduction in 
two different directions can be increased at the same time by 
adding high conductivity non-circular inclusions oriented at an 
angle between the two directions. The present solution can 
serve as a general model for anisotropic composites with 
dilute dispersion of particles. 
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